{ "id": "1710.10422", "version": "v1", "published": "2017-10-28T08:43:35.000Z", "updated": "2017-10-28T08:43:35.000Z", "title": "Resonant semilinear Robin problems with a general potential", "authors": [ "Nikolaos S. Papageorgiou", "Vicenţiu D. Rădulescu", "Dušan D. Repovš" ], "journal": "Electron. J. Qual. Theory Differ. Equ. (2017), art. 70, 15 pp", "doi": "10.14232/ejqtde.2017.1.70", "categories": [ "math.AP" ], "abstract": "We consider a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential. The reaction term is a Carath\\'eodory function which is resonant with respect to any nonprincipal eigenvalue both at $\\pm \\infty$ and 0. Using a variant of the reduction method, we show that the problem has at least two nontrivial smooth solutions.", "revisions": [ { "version": "v1", "updated": "2017-10-28T08:43:35.000Z" } ], "analyses": { "subjects": [ "35J20", "35J60" ], "keywords": [ "resonant semilinear robin problems", "general potential", "semilinear robin problem driven", "nontrivial smooth solutions", "laplacian plus" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }