{ "id": "1710.10349", "version": "v1", "published": "2017-10-27T22:08:28.000Z", "updated": "2017-10-27T22:08:28.000Z", "title": "Sharp estimates for oscillatory integral operators via polynomial partitioning", "authors": [ "Larry Guth", "Jonathan Hickman", "Marina Iliopoulou" ], "comment": "83 pages. 4 figures", "categories": [ "math.CA" ], "abstract": "The sharp range of $L^p$-estimates for the class of H\\\"ormander-type oscillatory integral operators is established in all dimensions under a positive-definite assumption on the phase. This is achieved by generalising a recent approach of the first author for studying the Fourier extension operator, which utilises polynomial partitioning arguments.", "revisions": [ { "version": "v1", "updated": "2017-10-27T22:08:28.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "oscillatory integral operators", "sharp estimates", "fourier extension operator", "utilises polynomial partitioning arguments", "positive-definite assumption" ], "note": { "typesetting": "TeX", "pages": 83, "language": "en", "license": "arXiv", "status": "editable" } } }