{ "id": "1710.10152", "version": "v1", "published": "2017-10-27T14:20:37.000Z", "updated": "2017-10-27T14:20:37.000Z", "title": "Very stable bundles and properness of the Hitchin map", "authors": [ "Christian Pauly", "Ana Peón-Nieto" ], "comment": "5 pages", "categories": [ "math.AG" ], "abstract": "Let $X$ be a smooth complex projective curve of genus $g\\geq 2$ and let $K$ be its canonical bundle. In this note we show that a stable vector bundle $E$ on $X$ is very stable, i.e. $E$ has no non-zero nilpotent Higgs field, if and only if the restriction of the Hitchin map to the vector space of Higgs fields $H^0(X, \\mathrm{End}(E) \\otimes K)$ is a proper map.", "revisions": [ { "version": "v1", "updated": "2017-10-27T14:20:37.000Z" } ], "analyses": { "subjects": [ "14H60", "14H70" ], "keywords": [ "hitchin map", "stable bundles", "properness", "non-zero nilpotent higgs field", "smooth complex projective curve" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }