{ "id": "1710.09594", "version": "v1", "published": "2017-10-26T08:52:26.000Z", "updated": "2017-10-26T08:52:26.000Z", "title": "The fundamental group of the complement of the singular locus of Lauricella's $F_C$", "authors": [ "Yoshiaki Goto", "Jyoichi Kaneko" ], "comment": "50 pages, 27 figures", "categories": [ "math.AG", "math.AT" ], "abstract": "We study the fundamental group of the complement of the singular locus of Lauricella's hypergeometric function $F_C$ of $n$ variables. The singular locus consists of $n$ hyperplanes and a hypersurface of degree $2^{n-1}$ in the complex $n$-space. We give a conjectural presentation of the fundamental group, and prove it in the three-dimensional case. We also consider a presentation of the fundamental group of $2^3$-covering of this space.", "revisions": [ { "version": "v1", "updated": "2017-10-26T08:52:26.000Z" } ], "analyses": { "subjects": [ "14F35", "57M05", "57M10" ], "keywords": [ "fundamental group", "complement", "lauricellas hypergeometric function", "singular locus consists", "conjectural presentation" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }