{ "id": "1710.08130", "version": "v1", "published": "2017-10-23T07:59:54.000Z", "updated": "2017-10-23T07:59:54.000Z", "title": "A semigroup approach to nonlinear Lévy processes", "authors": [ "Robert Denk", "Michael Kupper", "Max Nendel" ], "comment": "22 pages", "categories": [ "math.PR" ], "abstract": "We study the relation between L\\'evy processes under nonlinear expectations, nonlinear semigroups and fully nonlinear PDEs. First, we establish a one-to-one relation between nonlinear L\\'evy processes and nonlinear Markovian convolution semigroups. Second, we provide a condition on a family of infinitesimal generators $(A_\\lambda)_{\\lambda\\in\\Lambda}$ of linear L\\'evy processes which guarantees the existence of a nonlinear L\\'evy processes such that the corresponding nonlinear Markovian convolution semigroup is a viscosity solution of the fully nonlinear PDE $\\partial_t u=\\sup_{\\lambda\\in \\Lambda} A_\\lambda u$. The results are illustrated with several examples.", "revisions": [ { "version": "v1", "updated": "2017-10-23T07:59:54.000Z" } ], "analyses": { "subjects": [ "60G51", "49L25", "47H20" ], "keywords": [ "nonlinear lévy processes", "semigroup approach", "nonlinear levy processes", "fully nonlinear pde", "corresponding nonlinear markovian convolution semigroup" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }