{ "id": "1710.07127", "version": "v1", "published": "2017-10-19T13:18:52.000Z", "updated": "2017-10-19T13:18:52.000Z", "title": "Identities involving Bernoulli and Euler polynomials", "authors": [ "Horst Alzer", "Semyon Yakubovich" ], "categories": [ "math.CA" ], "abstract": "We present various identities involving the classical Bernoulli and Euler polynomials. Among others, we prove that $$ \\sum_{k=0}^{[n/4]}(-1)^k {n\\choose 4k}\\frac{B_{n-4k}(z) }{2^{6k}} =\\frac{1}{2^{n+1}}\\sum_{k=0}^{n} (-1)^k \\frac{1+i^k}{(1+i)^k} {n\\choose k}{B_{n-k}(2z)} $$ and $$ \\sum_{k=1}^{n} 2^{2k-1} {2n\\choose 2k-1} B_{2k-1}(z) = \\sum_{k=1}^n k \\, 2^{2k} {2n\\choose 2k} E_{2k-1}(z). $$ Applications of our results lead to formulas for Bernoulli and Euler numbers, like, for instance, $$ n E_{n-1} =\\sum_{k=1}^{[n/2]} \\frac{2^{2k}-1}{k} (2^{2k}-2^n){n\\choose 2k-1} B_{2k}B_{n-2k}. $$", "revisions": [ { "version": "v1", "updated": "2017-10-19T13:18:52.000Z" } ], "analyses": { "subjects": [ "11B68", "11M06", "12E10" ], "keywords": [ "euler polynomials", "identities", "euler numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }