{ "id": "1710.06990", "version": "v1", "published": "2017-10-19T02:42:02.000Z", "updated": "2017-10-19T02:42:02.000Z", "title": "On meromorphic solutions of functional equations of Fermat type", "authors": [ "Pei-chu Hu", "Qiong Wang" ], "comment": "15pages, conference", "categories": [ "math.CV" ], "abstract": "Take complex numbers $a_j,b_j$, $(j=0,1,2)$ such that $c\\neq0$ and {\\rm rank} ( {ccc} a_{0} & a_{1} & a_{2} b_{0} & b_{1} & b_{2} )=2. We show that if the following functional equation of Fermat type \\left\\{a_{0}f(z)+a_{1}f(z+c)+a_{2}f'(z)\\right\\}^3+\\left\\{b_{0}f(z)+b_{1}f(z+c)+b_{2}f'(z)\\right\\}^3=e^{\\alpha z+\\beta} has meromorphic solutions of finite order, then it has only entire solutions of the form $f(z)=Ae^{\\frac{\\alpha z+\\beta}{3}}+Ce^{Dz},$ which generalizes the results in {19} and {14}.", "revisions": [ { "version": "v1", "updated": "2017-10-19T02:42:02.000Z" } ], "analyses": { "subjects": [ "39B32", "34M05", "30D30" ], "keywords": [ "fermat type", "meromorphic solutions", "functional equation", "entire solutions", "finite order" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }