{ "id": "1710.06754", "version": "v1", "published": "2017-09-28T19:45:11.000Z", "updated": "2017-09-28T19:45:11.000Z", "title": "An upper bound on the minimal dispersion", "authors": [ "Mario Ullrich", "Jan Vybíral" ], "categories": [ "math.CA", "math.NA" ], "abstract": "For $\\varepsilon\\in(0,1/2)$ and a natural number $d\\ge 2$, let $N$ be a natural number with \\[ N \\,\\ge\\, 2^9\\,\\log_2(d)\\, \\left(\\frac{\\log_2(1/\\varepsilon)}{\\varepsilon}\\right)^2. \\] We prove that there is a set of $N$ points in the unit cube $[0,1]^d$, which intersects all axis-parallel boxes with volume $\\varepsilon$. That is, the dispersion of this point set is bounded from above by $\\varepsilon$.", "revisions": [ { "version": "v1", "updated": "2017-09-28T19:45:11.000Z" } ], "analyses": { "keywords": [ "minimal dispersion", "upper bound", "natural number", "point set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }