{ "id": "1710.06712", "version": "v1", "published": "2017-10-18T13:03:50.000Z", "updated": "2017-10-18T13:03:50.000Z", "title": "Linear response for Dirac observables of Anosov diffeomorphisms", "authors": [ "Matthieu Porte" ], "comment": "22 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "We consider a $\\mathcal{C}^3$ family $t\\mapsto f_t$ of $\\mathcal{C}^4$ Anosov diffeomorphisms on a compact Riemannian manifold $M$. Denoting by $\\rho_t$ the SRB measure of $f_t$, we prove that the map $t\\mapsto\\int \\theta d\\rho_t$ is differentiable if $\\theta$ is of the form $\\theta(x)=h(x)\\delta(g(x)-a)$, with $\\delta$ the Dirac distribution, $g:M\\rightarrow \\mathbb{R}$ a $\\mathcal{C}^4$ function, $h:M\\rightarrow\\mathbb{R}$ a $\\mathcal{C}^3$ function and $a$ a regular value of $g$. We also require a transversality condition, namely that the intersection of the support of $h$ with the level set $\\{g(x)=a\\} $ is foliated by 'admissible stable leaves'.", "revisions": [ { "version": "v1", "updated": "2017-10-18T13:03:50.000Z" } ], "analyses": { "keywords": [ "anosov diffeomorphisms", "dirac observables", "linear response", "compact riemannian manifold", "srb measure" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }