{ "id": "1710.06627", "version": "v1", "published": "2017-10-18T09:02:31.000Z", "updated": "2017-10-18T09:02:31.000Z", "title": "Monoidal categories of modules over quantum affine algebras of type A and B", "authors": [ "Masaki Kashiwara", "Myungho Kim", "Se-jin Oh" ], "comment": "39pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We construct an exact tensor functor from the category $\\mathcal{A}$ of finite-dimensional graded modules over the quiver Hecke algebra of type $A_\\infty$ to the category $\\mathscr C_{B^{(1)}_n}$ of finite-dimensional integrable modules over the quantum affine algebra of type $B^{(1)}_n$. It factors through the category $\\mathcal T_{2n}$, which is a localization of $\\mathcal{A}$. As a result, this functor induces a ring isomorphism from the Grothendieck ring of $\\mathcal T_{2n}$ (ignoring the gradings) to the Grothendieck ring of a subcategory $\\mathscr C^{0}_{B^{(1)}_n}$ of $\\mathscr C_{B^{(1)}_n}$. Moreover, it induces a bijection between the classes of simple objects. Because the category $\\mathcal T_{2n}$ is related to categories $\\mathscr C^{0}_{A^{(t)}_{2n-1}}$ $(t=1,2)$ of the quantum affine algebras of type $A^{(t)}_{2n-1}$, we obtain an interesting connection between those categories of modules over quantum affine algebras of type $A$ and type $B$. Namely, for each $t =1,2$, there exists an isomorphism between the Grothendieck ring of $\\mathscr C^{0}_{A^{(t)}_{2n-1}}$ and the Grothendieck ring of $\\mathscr C^{0}_{B^{(1)}_n}$, which induces a bijection between the classes of simple modules.", "revisions": [ { "version": "v1", "updated": "2017-10-18T09:02:31.000Z" } ], "analyses": { "subjects": [ "81R50", "16T25", "17B37" ], "keywords": [ "quantum affine algebra", "monoidal categories", "grothendieck ring", "quiver hecke algebra", "exact tensor functor" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }