{ "id": "1710.06626", "version": "v1", "published": "2017-10-18T08:46:53.000Z", "updated": "2017-10-18T08:46:53.000Z", "title": "Solvability of a steady boundary-value problem for the equations of one-temperature viscous compressible heat-conducting bifluids", "authors": [ "Alexander Mamontov", "Dmitriy Prokudin" ], "comment": "36 pages", "categories": [ "math.AP" ], "abstract": "We consider a boundary-value problem describing the steady motion of a two-component mixture of viscous compressible heat-conducting fluids in a bounded domain. We make no simplifying assumptions except for postulating the coincidence of phase temperatures (which is physically justified in certain situations), that is, we retain all summands in equations that are a natural generalization of the Navier-Stokes-Fourier model of the motion of a one-component medium. We prove the existence of weak generalized solutions of the problem.", "revisions": [ { "version": "v1", "updated": "2017-10-18T08:46:53.000Z" } ], "analyses": { "subjects": [ "35Q35", "76N10", "76T99" ], "keywords": [ "one-temperature viscous compressible heat-conducting bifluids", "steady boundary-value problem", "solvability", "two-component mixture" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }