{ "id": "1710.06108", "version": "v1", "published": "2017-10-17T05:54:08.000Z", "updated": "2017-10-17T05:54:08.000Z", "title": "Global behaviour of solutions of the fast diffusion equation", "authors": [ "Shu-Yu Hsu" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We will extend a recent result of B.~Choi and P.~Daskalopoulos (\\cite{CD}). For any $n\\ge 3$, $00$ and $\\lambda>0$, we prove the higher order expansion of the radially symmetric solution $v_{\\lambda,\\beta}(r)$ of $\\frac{n-1}{m}\\Delta v^m+\\frac{2\\beta}{1-m} v+\\beta x\\cdot\\nabla v=0$ in $\\mathbb{R}^n$, $v(0)=\\lambda$, as $r\\to\\infty$. As a consequence for any $n\\ge 3$ and $00$ and $K_1\\in\\mathbb{R}$, then as $t\\to\\infty$ the rescaled function $\\widetilde{u}(x,t)=e^{\\frac{2\\beta}{1-m}t}u(e^{\\beta t}x,t)$ converges uniformly on every compact subsets of $\\mathbb{R}^n$ to $v_{\\lambda_1,\\beta}$ for some constant $\\lambda_1>0$.", "revisions": [ { "version": "v1", "updated": "2017-10-17T05:54:08.000Z" } ], "analyses": { "subjects": [ "35B40", "35B20", "35B09" ], "keywords": [ "fast diffusion equation", "global behaviour", "higher order expansion", "compact subsets", "initial value" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }