{ "id": "1710.06023", "version": "v1", "published": "2017-10-16T22:56:10.000Z", "updated": "2017-10-16T22:56:10.000Z", "title": "Almost Universal Weighted Ternary Sums of Polygonal Numbers", "authors": [ "Siu Hang Man", "Archie Mehta" ], "categories": [ "math.NT" ], "abstract": "For a natural number $m$, generalized $m$-gonal numbers are defined by the formula $p_m(x)=\\frac{(m-2)x^2-(m-4)x}{2}$ with $x\\in \\mathbb Z$. In this paper, we determine a criterion on $a,b,c,m$ for which the weighted ternary sum $P_{a,b,c,m}:=ap_m(x)+bp_m(y)+cp_m(z)$ is almost universal. We also prove for some $a,b,c,m$ that the form $P_{a,b,c,m}$ is not almost universal, while it represents all possible congruence classes.", "revisions": [ { "version": "v1", "updated": "2017-10-16T22:56:10.000Z" } ], "analyses": { "subjects": [ "11E20", "11E25", "11E45", "11E81", "11H55", "05A30" ], "keywords": [ "universal weighted ternary sums", "polygonal numbers", "natural number", "congruence classes", "represents" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }