{ "id": "1710.05326", "version": "v1", "published": "2017-10-15T12:50:43.000Z", "updated": "2017-10-15T12:50:43.000Z", "title": "On the action of the Steenrod-Milnor operations on the invariants of the general linear groups", "authors": [ "Nguyen Thai Hoa", "Pham Thi Kim Minh", "Nguyen Sum" ], "comment": "7 pages", "journal": "Quynhon University Journal of Science, Vol. 7, No. 3 (2013), 5-12", "categories": [ "math.AT" ], "abstract": "Let $p$ be an odd prime number. Denote by $GL_n = GL(n,\\mathbb F_p)$ the general linear group over the prime field $\\mathbb F_p$. Each subgroup of $GL_n$ acts on the algebra $P_n=E(x_1,\\ldots,x_n)\\otimes \\mathbb F_p(y_1,\\ldots,y_n)$ in the usual manner. We grade $P_n$ by assigning $\\dim x_i=1$ and $\\dim y_i=2.$ This algebra is a module over the mod $p$ Steenrod algebra $\\mathcal A_p$. The purpose of the paper is to compute the action of the Steenrod-Milnor operations on the generators of $P_2^{GL_2}$. More precisely, we explicitly determine the action of $St^{(i,j)}$ on the Dickson invariants $Q_{2,0}$ and $Q_{2,1}$.", "revisions": [ { "version": "v1", "updated": "2017-10-15T12:50:43.000Z" } ], "analyses": { "subjects": [ "55S10", "55S05" ], "keywords": [ "general linear group", "steenrod-milnor operations", "odd prime number", "usual manner", "steenrod algebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }