{ "id": "1710.05255", "version": "v1", "published": "2017-10-15T01:04:55.000Z", "updated": "2017-10-15T01:04:55.000Z", "title": "Semiclassical states for Choquard type equations with critical growth: critical frequency case", "authors": [ "Yanheng Ding", "Fashun Gao", "Minbo Yang" ], "categories": [ "math.AP" ], "abstract": "In this paper we are interested in the existence of semiclassical states for the Choquard type equation $$ -\\vr^2\\Delta u +V(x)u =\\Big(\\int_{\\R^N} \\frac{G(u(y))}{|x-y|^\\mu}dy\\Big)g(u) \\quad \\mbox{in $\\R^N$}, $$ where $0<\\mu