{ "id": "1710.05001", "version": "v1", "published": "2017-10-13T16:49:16.000Z", "updated": "2017-10-13T16:49:16.000Z", "title": "Transformation formulas of a character analogue of $\\logθ_{2}(z)$", "authors": [ "Merve Çelebi Boztaş", "Mümün Can" ], "categories": [ "math.NT" ], "abstract": "In this paper, transformation formulas for the function \\[ A_{1}\\left(z,s:\\chi\\right)=\\sum\\limits_{n=1}^{\\infty}\\sum\\limits_{m=1}^{\\infty}\\chi\\left(n\\right)\\chi\\left(m\\right)\\left(-1\\right)^{m}n^{s-1}e^{2\\pi imnz/k} \\] are obtained. Sums that appear in transformation formulas are generalizations of the Hardy--Berndt sums $s_{j}(d,c),$ $j=1,2,5$. As applications of these transformation formulas, reciprocity formulas for these sums are derived and several series relations are presented.", "revisions": [ { "version": "v1", "updated": "2017-10-13T16:49:16.000Z" } ], "analyses": { "subjects": [ "11F20", "11B68" ], "keywords": [ "transformation formulas", "character analogue", "hardy-berndt sums", "reciprocity formulas" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }