{ "id": "1710.04865", "version": "v1", "published": "2017-10-13T10:30:09.000Z", "updated": "2017-10-13T10:30:09.000Z", "title": "The colored Jones polynomial and Kontsevich-Zagier series for double twist knots", "authors": [ "Jeremy Lovejoy", "Robert Osburn" ], "comment": "23 pages", "categories": [ "math.GT", "math.CO", "math.NT" ], "abstract": "Using a result of Takata, we prove a formula for the colored Jones polynomial of the double twist knots $K_{(-m,-p)}$ and $K_{(-m,p)}$ where $m$ and $p$ are positive integers. In the $(-m,-p)$ case, this leads to new families of $q$-hypergeometric series generalizing the Kontsevich-Zagier series. Comparing with the cyclotomic expansion of the colored Jones polynomials of $K_{(m,p)}$ gives a generalization of a duality at roots of unity between the Kontsevich-Zagier function and the generating function for strongly unimodal sequences.", "revisions": [ { "version": "v1", "updated": "2017-10-13T10:30:09.000Z" } ], "analyses": { "subjects": [ "57M27" ], "keywords": [ "colored jones polynomial", "double twist knots", "kontsevich-zagier series", "cyclotomic expansion", "kontsevich-zagier function" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }