{ "id": "1710.04733", "version": "v1", "published": "2017-10-12T21:49:24.000Z", "updated": "2017-10-12T21:49:24.000Z", "title": "A poset $Φ_n$ whose maximal chains are in bijection with the $n \\times n$ alternating sign matrices", "authors": [ "Paul Terwilliger" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "For an integer $n\\geq 1$, we display a poset $\\Phi_n$ whose maximal chains are in bijection with the $n\\times n$ alternating sign matrices. The Hasse diagram $\\widehat \\Phi_n$ is obtained from the $n$-cube by adding some edges. We show that the dihedral group $D_{2n}$ acts on $\\widehat \\Phi_n$ as a group of automorphisms.", "revisions": [ { "version": "v1", "updated": "2017-10-12T21:49:24.000Z" } ], "analyses": { "subjects": [ "05B20" ], "keywords": [ "alternating sign matrices", "maximal chains", "hasse diagram", "dihedral group", "automorphisms" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }