{ "id": "1710.04327", "version": "v1", "published": "2017-10-11T22:56:45.000Z", "updated": "2017-10-11T22:56:45.000Z", "title": "Jordan Decompositions of cocenters of reductive $p$-adic groups", "authors": [ "Xuhua He", "Ju-lee Kim" ], "comment": "29 pages", "categories": [ "math.RT" ], "abstract": "Cocenters of Hecke algebras $\\mathcal H$ play an important role in studying mod $\\ell$ or $\\mathbb C$ harmonic analysis on connected $p$-adic reductive groups. On the other hand, the depth $r$ Hecke algebra $\\mathcal H_{r^+}$ is well suited to study depth $r$ smooth representations. In this paper, we study depth $r$ rigid cocenters $\\overline{\\mathcal H}^{\\mathrm{rig}}_{r^+}$ of a connected reductive $p$-adic group over rings of characteristic zero or $\\ell\\neq p$. More precisely, under some mild hypotheses, we establish a Jordan decomposition of the depth $r$ rigid cocenter, hence find an explicit basis of $\\overline{\\mathcal H}^{\\mathrm{rig}}_{r^+}$.", "revisions": [ { "version": "v1", "updated": "2017-10-11T22:56:45.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70" ], "keywords": [ "jordan decomposition", "adic group", "hecke algebra", "rigid cocenter", "study depth" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }