{ "id": "1710.04247", "version": "v1", "published": "2017-10-11T18:32:57.000Z", "updated": "2017-10-11T18:32:57.000Z", "title": "Lagrange's Theorem for Binary Squares", "authors": [ "Parthasarathy Madhusudan", "Dirk Nowotka", "Aayush Rajasekaran", "Jeffrey Shallit" ], "categories": [ "math.NT", "cs.FL" ], "abstract": "We prove, using a decision procedure based on finite automata, that every natural number > 686 is the sum of at most 4 natural numbers whose canonical base-2 representation is a binary square, that is, a string of the form xx for some block of bits x.", "revisions": [ { "version": "v1", "updated": "2017-10-11T18:32:57.000Z" } ], "analyses": { "keywords": [ "binary square", "lagranges theorem", "natural number", "finite automata", "decision procedure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }