{ "id": "1710.03851", "version": "v1", "published": "2017-10-10T22:58:51.000Z", "updated": "2017-10-10T22:58:51.000Z", "title": "Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains", "authors": [ "Yunbai Cao", "Chanwoo Kim", "Donghyun Lee" ], "comment": "74 pages, submitted", "categories": [ "math.AP" ], "abstract": "When dilute charged particles are confined in a bounded domain, boundary effects are crucial in the dynamics of particles. We construct a unique global-in-time solution to the Vlasov-Poisson-Boltzmann system in convex domains with the diffuse boundary condition. The construction is based on $L^{2}$-$L^{\\infty}$ framework with a new weighted $W^{1,p}$-estimate of distribution function and $C^{2}$-estimate of the self-consistent electric potential. Moreover we prove an exponential convergence of distribution function toward the global Maxwellian.", "revisions": [ { "version": "v1", "updated": "2017-10-10T22:58:51.000Z" } ], "analyses": { "keywords": [ "global strong solutions", "vlasov-poisson-boltzmann system", "bounded domain", "distribution function", "diffuse boundary condition" ], "note": { "typesetting": "TeX", "pages": 74, "language": "en", "license": "arXiv", "status": "editable" } } }