{ "id": "1710.02183", "version": "v1", "published": "2017-10-05T19:17:48.000Z", "updated": "2017-10-05T19:17:48.000Z", "title": "Computing weight $q$-multiplicities for the representations of the simple Lie algebras", "authors": [ "Pamela E. Harris", "Erik Insko", "Anthony Simpson" ], "comment": "9 pages, code for program, and 5 tables for computation using exceptional Lie algebras", "categories": [ "math.RT" ], "abstract": "The multiplicity of a weight $\\mu$ in an irreducible representation of a simple Lie algebra $\\mathfrak{g}$ with highest weight $\\lambda$ can be computed via the use of Kostant's weight multiplicity formula. This formula is an alternating sum over the Weyl group and involves the computation of a partition function. In this paper we consider a $q$-analog of Kostant's weight multiplicity and present a SageMath program to compute $q$-multiplicities for the simple Lie algebras.", "revisions": [ { "version": "v1", "updated": "2017-10-05T19:17:48.000Z" } ], "analyses": { "subjects": [ "17-08" ], "keywords": [ "simple lie algebra", "computing weight", "representation", "kostants weight multiplicity formula", "sagemath program" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }