{ "id": "1710.02037", "version": "v1", "published": "2017-10-05T14:18:23.000Z", "updated": "2017-10-05T14:18:23.000Z", "title": "The Dirichlet Problem for Einstein Metrics on Cohomogeneity One Manifolds", "authors": [ "Timothy Buttsworth" ], "comment": "16 pages, no figures", "categories": [ "math.DG" ], "abstract": "Let $G/H$ be a compact homogeneous space, and let $\\hat{g}_0$ and $\\hat{g}_1$ be $G$-invariant Riemannian metrics on $G/H$. We consider the problem of finding a $G$-invariant Einstein metric $g$ on the manifold $G/H\\times [0,1]$ subject to the constraint that $g$ restricted to $G/H\\times \\{0\\}$ and $G/H\\times \\{1\\}$ coincides with $\\hat{g}_0$ and $\\hat{g}_1$, respectively. By assuming that the isotropy representation of $G/H$ consists of pairwise inequivalent irreducible summands, we show that we can always find such an Einstein metric.", "revisions": [ { "version": "v1", "updated": "2017-10-05T14:18:23.000Z" } ], "analyses": { "subjects": [ "53C20", "53C30", "58J32" ], "keywords": [ "dirichlet problem", "cohomogeneity", "invariant einstein metric", "invariant riemannian metrics", "compact homogeneous space" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }