{ "id": "1710.01911", "version": "v1", "published": "2017-10-05T08:26:12.000Z", "updated": "2017-10-05T08:26:12.000Z", "title": "A metric theory of minimal gaps", "authors": [ "Zeév Rudnick" ], "categories": [ "math.NT" ], "abstract": "We study the minimal gap statistic for fractional parts of sequences of the form $\\mathcal A^\\alpha = \\{\\alpha a(n)\\}$ where $\\mathcal A = \\{a(n)\\}$ is a sequence of distinct of integers. Assuming that the additive energy of the sequence is close to its minimal possible value, we show that for almost all $\\alpha$, the minimal gap $\\delta_{\\min}^\\alpha(N)=\\min\\{\\alpha a(m)-\\alpha a(n)\\bmod 1: 1\\leq m\\neq n\\leq N\\}$ is close to that of a random sequence.", "revisions": [ { "version": "v1", "updated": "2017-10-05T08:26:12.000Z" } ], "analyses": { "keywords": [ "metric theory", "minimal gap statistic", "random sequence", "fractional parts", "additive energy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }