{ "id": "1710.01271", "version": "v1", "published": "2017-10-03T16:43:16.000Z", "updated": "2017-10-03T16:43:16.000Z", "title": "Mass and Extremals Associated with the Hardy-Schrödinger Operator on Hyperbolic Space", "authors": [ "Hardy Chan", "Nassif Ghoussoub", "Saikat Mazumdar", "Shaya Shakerian", "Luiz Fernando de Oliveira Faria" ], "comment": "22 pages, Updated version - if any - can be downloaded at http://www.birs.ca/~nassif/", "categories": [ "math.AP" ], "abstract": "We consider the Hardy-Schr\\\"odinger operator $ -\\Delta_{\\mathbb{B}^n}-\\gamma{V_2}$ on the Poincar\\'e ball model of the Hyperbolic space ${\\mathbb{B}^n}$ ($n \\geq 3$). Here $V_2$ is a well chosen radially symmetric potential, which behaves like the Hardy potential around its singularity at $0$, i.e., $V_2(r)\\sim \\frac{1}{r^2}$. Just like in the Euclidean setting, the operator $ -\\Delta_{\\mathbb{B}^n}-\\gamma{V_2}$ is positive definite whenever $\\gamma <\\frac{(n-2)^2}{4}$, in which case we exhibit explicit solutions for the equation $$-\\Delta_{\\mathbb{B}^n}u-\\gamma{V_2}u=V_{2^*(s)}u^{2^*(s)-1}\\quad{\\text{ in }}\\mathbb{B}^n,$$ where $0\\leq s <2$, $2^*(s)=\\frac{2(n-s)}{n-2}$, and $V_{2^*(s)}$ is a weight that behaves like $\\frac{1}{r^s}$ around $0$. The same equation, on bounded domains $\\Omega$ of ${\\mathbb{B}^n}$ containing $0$ but not touching the hyperbolic boundary, has positive solutions if $0 < \\gamma \\leq \\frac{(n-2)^{2}}{4}-\\frac{1}{4}$. However, if $\\frac{(n-2)^{2}}{4}-\\frac{1}{4}< \\gamma < \\frac{(n-2)^{2}}{4}$, the existence of solutions requires the positivity of the \"hyperbolic Hardy mass\" $m_{_{\\mathbb{B}^n}}(\\Omega)$ of the domain, a notion that we introduce and analyse therein.", "revisions": [ { "version": "v1", "updated": "2017-10-03T16:43:16.000Z" } ], "analyses": { "keywords": [ "hyperbolic space", "hardy-schrödinger operator", "poincare ball model", "hyperbolic hardy mass", "chosen radially symmetric potential" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }