{ "id": "1710.01181", "version": "v1", "published": "2017-10-03T14:21:32.000Z", "updated": "2017-10-03T14:21:32.000Z", "title": "Quasi-periodic solutions for differential equations with an elliptic-type degenerate equilibrium point under small perturbations", "authors": [ "Xuemei Li", "Zaijiu Shang" ], "comment": "32pages", "categories": [ "math.DS" ], "abstract": "This work focuses on the existence of quasi-periodic solutions for ordinary and delay differential equations (ODEs and DDEs for short) with an elliptic-type degenerate equilibrium point under quasi-periodic perturbations. We prove that under appropriate hypotheses there exist quasi-periodic solutions for perturbed ODEs and DDEs near the equilibrium point for most parameter values, then apply these results to the delayed van der Pol's oscillator with zero-Hopf singularity.", "revisions": [ { "version": "v1", "updated": "2017-10-03T14:21:32.000Z" } ], "analyses": { "keywords": [ "elliptic-type degenerate equilibrium point", "quasi-periodic solutions", "differential equations", "small perturbations", "delayed van der pols oscillator" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }