{ "id": "1710.00883", "version": "v1", "published": "2017-10-02T19:48:18.000Z", "updated": "2017-10-02T19:48:18.000Z", "title": "Generic 2-parameter perturbations of parabolic singular points of vector fields in C", "authors": [ "Martin Klimes", "Christiane Rousseau" ], "comment": "44 pages, 34 figures", "categories": [ "math.DS" ], "abstract": "We describe the equivalence classes of germs of generic $2$-parameter families of complex vector fields $\\dot z = \\omega_\\epsilon(z)$ on $\\mathbb{C}$ unfolding a singular parabolic point of multiplicity $k+1$: $\\omega_0= z^{k+1} +o(z^{k+1})$. The equivalence is under conjugacy by holomorphic change of coordinate and parameter. As a preparatory step, we present the bifurcation diagram of the family of vector fields $\\dot z = z^{k+1} + \\epsilon_1 z + \\epsilon_0$ over $\\mathbb{CP}^1$. This presentation is done using the new tools of periodgon and star domain. We then provide a description of the modulus space and (almost) unique normal forms for the equivalence classes of germs.", "revisions": [ { "version": "v1", "updated": "2017-10-02T19:48:18.000Z" } ], "analyses": { "subjects": [ "32M25", "32S65", "34M99" ], "keywords": [ "parabolic singular points", "equivalence classes", "perturbations", "singular parabolic point", "unique normal forms" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }