{ "id": "1709.10334", "version": "v1", "published": "2017-09-29T11:23:53.000Z", "updated": "2017-09-29T11:23:53.000Z", "title": "Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras", "authors": [ "Vyacheslav Futorny", "Tetiana Klymchuk", "Anatolii P. Petravchuk", "Vladimir V. Sergeichuk" ], "comment": "11 pages", "journal": "Linear Algebra and Its Applications 536 (2018) 201-209", "doi": "10.1016/j.laa.2017.09.019", "categories": [ "math.RT" ], "abstract": "For each two-dimensional vector space $V$ of commuting $n\\times n$ matrices over a field $\\mathbb F$ with at least 3 elements, we denote by $\\widetilde V$ the vector space of all $(n+1)\\times(n+1)$ matrices of the form $\\left[\\begin{smallmatrix}A&*\\\\0&0\\end{smallmatrix}\\right]$ with $A\\in V$. We prove the wildness of the problem of classifying Lie algebras $\\widetilde V$ with the bracket operation $[u,v]:=uv-vu$. We also prove the wildness of the problem of classifying two-dimensional vector spaces consisting of commuting linear operators on a vector space over a field.", "revisions": [ { "version": "v1", "updated": "2017-09-29T11:23:53.000Z" } ], "analyses": { "subjects": [ "15A21", "16G60", "17B10" ], "keywords": [ "commuting linear operators", "classifying two-dimensional spaces", "lie algebras", "classifying two-dimensional vector spaces consisting" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }