{ "id": "1709.10189", "version": "v1", "published": "2017-09-28T22:17:42.000Z", "updated": "2017-09-28T22:17:42.000Z", "title": "Congruences for coefficients of level 2 modular functions with poles at 0", "authors": [ "Paul Jenkins", "Ryan Keck", "Eric Moss" ], "categories": [ "math.NT" ], "abstract": "We give congruences modulo powers of 2 for the Fourier coefficients of certain level 2 modular functions with poles only at 0, answering a question posed by Andersen and the first author. The congruences involve a modulus that depends on the binary expansion of the modular form's order of vanishing at $\\infty$.", "revisions": [ { "version": "v1", "updated": "2017-09-28T22:17:42.000Z" } ], "analyses": { "subjects": [ "11F30", "11F37" ], "keywords": [ "modular functions", "congruences modulo powers", "modular forms order", "fourier coefficients", "first author" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }