{ "id": "1709.10023", "version": "v1", "published": "2017-09-28T15:34:12.000Z", "updated": "2017-09-28T15:34:12.000Z", "title": "Zagier duality for level $p$ weakly holomorphic modular forms", "authors": [ "Paul Jenkins", "Grant Molnar" ], "categories": [ "math.NT" ], "abstract": "We prove Zagier duality between the Fourier coefficients of canonical bases for spaces of weakly holomorphic modular forms of prime level $p$ with $11 \\leq p \\leq 37$ with poles only at the cusp at $\\infty$, and special cases of duality for an infinite class of prime levels. We derive generating functions for the bases for genus 1 levels.", "revisions": [ { "version": "v1", "updated": "2017-09-28T15:34:12.000Z" } ], "analyses": { "subjects": [ "11F30", "11F37" ], "keywords": [ "weakly holomorphic modular forms", "zagier duality", "prime level", "fourier coefficients", "special cases" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }