{ "id": "1709.09867", "version": "v1", "published": "2017-09-28T09:30:31.000Z", "updated": "2017-09-28T09:30:31.000Z", "title": "The $1$-Yamabe equation on graph", "authors": [ "Huabin Ge", "Wenfeng Jiang" ], "comment": "10 pages. All comments are welcome", "categories": [ "math.DG", "math.AP" ], "abstract": "We study the following $1$-Yamabe equation on a connected finite graph $$\\Delta_1u+g\\mathrm{Sgn}(u)=h|u|^{\\alpha-1}\\mathrm{Sgn}(u),$$ where $\\Delta_1$ is the discrete $1$-Laplacian, $\\alpha>1$ and $g, h>0$ are known. We show that the above $1$-Yamabe equation always has a nontrivial solution $u\\geq0$, $u\\neq0$.", "revisions": [ { "version": "v1", "updated": "2017-09-28T09:30:31.000Z" } ], "analyses": { "keywords": [ "yamabe equation", "connected finite graph", "nontrivial solution" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }