{ "id": "1709.09487", "version": "v1", "published": "2017-09-27T13:16:30.000Z", "updated": "2017-09-27T13:16:30.000Z", "title": "Boundary Regularity for the $\\infty$-Heat Equation", "authors": [ "Nikolai Ubostad" ], "categories": [ "math.AP" ], "abstract": "We study the boundary regularity for the normalised $\\infty$-heat equation $u_t = \\Delta_{\\infty}^Nu$ in arbitrary domains. Perron's Method is used for constructing solutions. We characterize regular boundary points with barrier functions, and prove an Exterior Ball result. A Petrovsky-like criterion is established.", "revisions": [ { "version": "v1", "updated": "2017-09-27T13:16:30.000Z" } ], "analyses": { "keywords": [ "heat equation", "boundary regularity", "exterior ball result", "characterize regular boundary points", "perrons method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }