{ "id": "1709.08611", "version": "v1", "published": "2017-09-25T17:41:23.000Z", "updated": "2017-09-25T17:41:23.000Z", "title": "A Characterization of Convex Functions", "authors": [ "Paolo Leonetti" ], "categories": [ "math.CA" ], "abstract": "Let $D$ be a convex subset of a real vector space. It is shown that a radially lower semicontinuous function $f: D\\to \\mathbf{R}\\cup \\{+\\infty\\}$ is convex if and only if for all $x,y \\in D$ there exists $\\alpha=\\alpha(x,y) \\in (0,1)$ such that $f(\\alpha x+(1-\\alpha)y) \\le \\alpha f(x)+(1-\\alpha)f(y)$.", "revisions": [ { "version": "v1", "updated": "2017-09-25T17:41:23.000Z" } ], "analyses": { "subjects": [ "25B62", "26A51", "52A07" ], "keywords": [ "convex functions", "characterization", "real vector space", "convex subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }