{ "id": "1709.08551", "version": "v1", "published": "2017-09-25T15:21:15.000Z", "updated": "2017-09-25T15:21:15.000Z", "title": "Non-vanishing of Dirichlet series without Euler products", "authors": [ "William D. Banks" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "We give a new proof that the Riemann zeta function is nonzero in the half-plane $\\{s\\in{\\mathbb C}:\\sigma>1\\}$. A novel feature of this proof is that it makes no use of the Euler product for $\\zeta(s)$.", "revisions": [ { "version": "v1", "updated": "2017-09-25T15:21:15.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "euler product", "dirichlet series", "riemann zeta function", "non-vanishing" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }