{ "id": "1709.07187", "version": "v1", "published": "2017-09-21T07:33:55.000Z", "updated": "2017-09-21T07:33:55.000Z", "title": "On convergence rate in the Gauss-Kuzmin problem for $θ$-expansions", "authors": [ "Gabriela Ileana Sebe", "Dan Lascu" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "After providing an overview of $\\theta$-expansions introduced by Chakraborty and Rao, we focus on the Gauss-Kuzmin problem for this new transformation. Actually, we complete our study on these expansions by proving a two-dimensional Gauss-Kuzmin theorem. More exactly, we obtain such a theorem related to the natural extension of the associated measure-dynamical system. Finally, we derive explicit lower and upper bounds of the error term which provide interesting numerical calculations for the convergence rate involved.", "revisions": [ { "version": "v1", "updated": "2017-09-21T07:33:55.000Z" } ], "analyses": { "subjects": [ "11J70", "11K50", "28D05" ], "keywords": [ "gauss-kuzmin problem", "convergence rate", "expansions", "two-dimensional gauss-kuzmin theorem", "error term" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }