{ "id": "1709.07140", "version": "v1", "published": "2017-09-21T02:58:36.000Z", "updated": "2017-09-21T02:58:36.000Z", "title": "Classification of rational 1-forms on the Riemann sphere up to PSL(2,C)", "authors": [ "Julio C. Magaña-Cáceres" ], "comment": "17 pages", "categories": [ "math.GT" ], "abstract": "We study the family $\\Omega^1(-s)$ of rational 1--forms on the Riemann sphere, having exactly $-s \\leq -2$ simple poles. Three equivalent $(2s-1)$--dimensional complex parametrizations on $\\Omega^1(-s)$, using coefficients, residues--poles and zeros--poles of the 1--forms, are recognized. A rational 1--form is isochronous when all their residues are purely imaginary. We prove that the subfamily $\\mathcal{RI}\\Omega^1(-s)$ of isochronous 1--forms is a $(3s-1)$--dimensional real analytic submanifold in the complex manifold $\\Omega^1(-s)$. The complex Lie group $PSL(2,\\mathbb{C})$ acts holomorphically on $\\Omega^1(-s)$. For $s \\geq 3$, the $PSL(2,\\mathbb{C})$--action is proper on $\\Omega^1(-s)$ and $\\mathcal{RI}\\Omega^1(-s)$. Therefore, the quotients $\\Omega^1(-s)/PSL(2,\\mathbb{C})$ and $\\mathcal{RI}\\Omega^1(-s)/PSL(2,\\mathbb{C})$ admit a stratification by orbit types. Using an explicit set of $PSL(2,\\mathbb{C})$--invariant functions, we give parametrizations for the quotients $\\Omega^1(-s)/PSL(2,\\mathbb{C})$ and $\\mathcal{RI}\\Omega^1(-s)/PSL(2,\\mathbb{C})$.", "revisions": [ { "version": "v1", "updated": "2017-09-21T02:58:36.000Z" } ], "analyses": { "subjects": [ "32M05", "30F30" ], "keywords": [ "riemann sphere", "dimensional real analytic submanifold", "classification", "complex lie group", "dimensional complex parametrizations" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }