{ "id": "1709.06817", "version": "v1", "published": "2017-09-20T11:27:37.000Z", "updated": "2017-09-20T11:27:37.000Z", "title": "Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities", "authors": [ "Pedro T. P. Lopes", "Elmar Schrohe" ], "categories": [ "math.AP", "math.OA" ], "abstract": "We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.", "revisions": [ { "version": "v1", "updated": "2017-09-20T11:27:37.000Z" } ], "analyses": { "subjects": [ "58J32", "35J70", "47L15", "47A53" ], "keywords": [ "spectral invariance", "conical singularities", "classical pseudodifferential boundary value problems", "zero order operators", "fredholm property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }