{ "id": "1709.06777", "version": "v1", "published": "2017-09-20T09:21:06.000Z", "updated": "2017-09-20T09:21:06.000Z", "title": "Estimates near the origin for functional calculus on analytic semigroups", "authors": [ "I. Chalendar", "J. Esterle", "J. R. Partington" ], "comment": "17 pages, 1 figure", "categories": [ "math.FA", "math.CV" ], "abstract": "This paper provides sharp lower estimates near the origin for the functional calculus $F(-uA)$ of a generator $A$ of an operator semigroup defined on a sector; here $F$ is given as the Fourier--Borel transform of an analytic functional. The results are linked to the existence of an identity element in the Banach algebra generated by the semigroup. Both the quasinilpotent and non-quasinilpotent cases are considered, and sharp results are proved extending many in the literature.", "revisions": [ { "version": "v1", "updated": "2017-09-20T09:21:06.000Z" } ], "analyses": { "subjects": [ "47D03", "46J40", "46H30", "30A42", "47A60" ], "keywords": [ "functional calculus", "analytic semigroups", "sharp lower estimates", "sharp results", "fourier-borel transform" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }