{ "id": "1709.06441", "version": "v1", "published": "2017-09-19T14:14:13.000Z", "updated": "2017-09-19T14:14:13.000Z", "title": "Every group is the outer automorphism group of an HNN-extension of a fixed triangle group", "authors": [ "Alan D. Logan" ], "comment": "35 pages", "categories": [ "math.GR" ], "abstract": "Fix an equilateral triangle group $T_i=\\langle a, b; a^i, b^i, (ab)^i\\rangle$ with $i\\geq6$ arbitrary. Our main result is: for every presentation $\\mathcal{P}$ of every countable group $Q$ there exists an HNN-extension $T_{\\mathcal{P}}$ of $T_i$ such that $\\operatorname{Out}(T_{\\mathcal{P}})\\cong Q$. We construct the HNN-extensions explicitly, and examples are given. The class of groups constructed have nice categorical and residual properties. In order to prove our main result we give a method for recognising malnormal subgroups of small cancellation groups, and we introduce the concept of \"malcharacteristic\" subgroups.", "revisions": [ { "version": "v1", "updated": "2017-09-19T14:14:13.000Z" } ], "analyses": { "subjects": [ "20F28", "20F65", "20F55" ], "keywords": [ "outer automorphism group", "fixed triangle group", "hnn-extension", "main result", "small cancellation groups" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }