{ "id": "1709.05544", "version": "v1", "published": "2017-09-16T18:11:12.000Z", "updated": "2017-09-16T18:11:12.000Z", "title": "Existence result under flatness condition for a nonlinear elliptic equation with Sobolev exponent", "authors": [ "Zakaria Boucheche" ], "comment": "29 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we consider the following nonlinear elliptic equation with Dirichlet boundary condition: $-\\Delta u=K(x)u^{\\frac{n+2}{n-2}},\\, u>0$ in $\\Omega,\\, u=0$ on $\\partial\\Omega$, where $\\Omega$ is a smooth bounded domain in $\\mathbb{R}^n,$ $n\\geqslant 4,$ and $K$ is a $\\mathcal{C}^1$-positive function in $\\bar{\\Omega}$. Under the assumption that the order of flatness at each critical point of $K$ is $\\beta \\in ]\\,n-2,\\,n[,$ we give precise estimates on the looses of the compactness, and we prove an existence result through an Euler-Hopf type formula.", "revisions": [ { "version": "v1", "updated": "2017-09-16T18:11:12.000Z" } ], "analyses": { "subjects": [ "35J60" ], "keywords": [ "nonlinear elliptic equation", "existence result", "flatness condition", "sobolev exponent", "dirichlet boundary condition" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }