{ "id": "1709.05497", "version": "v1", "published": "2017-09-16T11:15:33.000Z", "updated": "2017-09-16T11:15:33.000Z", "title": "Non-existence of stable solutions for weighted $p$-Laplace equation", "authors": [ "Kaushik Bal", "Prashanta Garain" ], "categories": [ "math.AP" ], "abstract": "We provide sufficient conditions on $w\\in L^1_{loc}(\\mathbb{R}^N)$ such that the weighted $p$-Laplace equation $$-\\operatorname{div}\\big(w(x)|\\nabla u|^{p-2}\\nabla u\\big)=f(u)\\;\\;\\mbox{in}\\;\\;\\mathbb{R}^N$$ does not admit any stable $C^{1,\\zeta}_{loc}$ solution in $\\mathbb{R}^N$ where $f(x)$ is either $-x^{-\\delta}$ or $e^x$ for any $0<\\zeta<1$.", "revisions": [ { "version": "v1", "updated": "2017-09-16T11:15:33.000Z" } ], "analyses": { "subjects": [ "35A01", "35B93", "35J92" ], "keywords": [ "laplace equation", "stable solutions", "non-existence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }