{ "id": "1709.05020", "version": "v1", "published": "2017-09-15T00:55:06.000Z", "updated": "2017-09-15T00:55:06.000Z", "title": "On the Existence of a Closed, Embedded, Rotational $λ$-Hypersurface", "authors": [ "John Ross" ], "comment": "11 pages", "categories": [ "math.DG" ], "abstract": "In this paper we show the existence of a closed, embedded $\\lambda$-hypersurfaces $\\Sigma \\subset \\mathbb{R}^{2n}$. The hypersurface is diffeomorhic to $\\mathbb{S}^{n-1} \\times \\mathbb{S}^{n-1} \\times \\mathbb{S}^1$ and exhibits $SO(n) \\times SO(n)$ symmetry. Our approach uses a \"shooting method\" similar to the approach used by McGrath in constructing a generalized self-shrinking torus solution to mean curvature flow. The result generalizes the $\\lambda$-torus found by Cheng and Wei.", "revisions": [ { "version": "v1", "updated": "2017-09-15T00:55:06.000Z" } ], "analyses": { "subjects": [ "53A10" ], "keywords": [ "hypersurface", "rotational", "mean curvature flow", "result generalizes", "generalized self-shrinking torus solution" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }