{ "id": "1709.03932", "version": "v1", "published": "2017-09-12T16:12:48.000Z", "updated": "2017-09-12T16:12:48.000Z", "title": "The 4-girth-thickness of the complete multipartite graph", "authors": [ "Christian Rubio-Montiel" ], "comment": "6 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "The $g$-girth-thickness $\\theta(g,G)$ of a graph $G$ is the smallest number of planar subgraphs of girth at least $g$ whose union is $G$. In this paper, we calculate the $4$-girth-thickness $\\theta(4,G)$ of the complete $m$-partite graph $G$ when each part has an even number of vertices.", "revisions": [ { "version": "v1", "updated": "2017-09-12T16:12:48.000Z" } ], "analyses": { "subjects": [ "05C10" ], "keywords": [ "complete multipartite graph", "smallest number", "planar subgraphs", "girth-thickness" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }