{ "id": "1709.03929", "version": "v1", "published": "2017-09-12T16:06:14.000Z", "updated": "2017-09-12T16:06:14.000Z", "title": "Simple modules over the Lie algebras of divergence zero vector fields on a torus", "authors": [ "Brendan Frisk Dubsky", "Xianqian Guo", "Yufeng Yao", "Kaiming Zhao" ], "comment": "20 pages", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "Let $n\\ge2$ be an integer, $\\mathcal{K}_n$ the Weyl algebra over the Laurent polynomial algebra $A_n=\\mathbb{C} [x_1^{\\pm1}, x_2^{\\pm1}, ..., x_n^{\\pm1}]$, and $\\mathbb{S}_n$ the Lie algebra of divergence zero vector fields on an $n$-dimensional torus. For any $\\mathfrak{sl}_n$-module $V$ and any module $P$ over $\\mathcal{K}_n$, we define an $\\mathbb{S}_n$-module structure on the tensor product $P\\otimes V$. In this paper, necessary and sufficient conditions for the $\\mathbb{S}_n$-modules $P\\otimes V$ to be simple are given, and an isomorphism criterion for nonminuscule $\\mathbb{S}_n$-modules is provided. More precisely, all nonminuscule $\\mathbb{S}_n$-modules are simple, and pairwise nonisomorphic. For minuscule $\\mathbb{S}_n$-modules, minimal and maximal submodules are concretely constructed.", "revisions": [ { "version": "v1", "updated": "2017-09-12T16:06:14.000Z" } ], "analyses": { "subjects": [ "17B10", "17B65", "17B66" ], "keywords": [ "divergence zero vector fields", "lie algebra", "simple modules", "laurent polynomial algebra", "module structure" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }