{ "id": "1709.03753", "version": "v1", "published": "2017-09-12T09:18:58.000Z", "updated": "2017-09-12T09:18:58.000Z", "title": "AR(1) sequence with random coefficients: Regenerative properties and its application", "authors": [ "Krishna B. Athreya", "Koushik Saha", "Radhendushka Srivastava" ], "categories": [ "math.PR" ], "abstract": "Let $\\{X_n\\}_{n\\ge0}$ be a sequence of real valued random variables such that $X_n=\\rho_n X_{n-1}+\\epsilon_n,~n=1,2,\\ldots$, where $\\{(\\rho_n,\\epsilon_n)\\}_{n\\ge1}$ are i.i.d. and independent of initial value (possibly random) $X_0$. In this paper it is shown that, under some natural conditions on the distribution of $(\\rho_1,\\epsilon_1)$, the sequence $\\{X_n\\}_{n\\ge0}$ is regenerative in the sense that it could be broken up into i.i.d. components. Further, when $\\rho_1$ and $\\epsilon_1$ are independent, we construct a non-parametric strongly consistent estimator of the characteristic functions of $\\rho_1$ and $\\epsilon_1$.", "revisions": [ { "version": "v1", "updated": "2017-09-12T09:18:58.000Z" } ], "analyses": { "subjects": [ "60G20" ], "keywords": [ "random coefficients", "regenerative properties", "application", "real valued random variables", "non-parametric strongly consistent estimator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }