{ "id": "1709.03293", "version": "v1", "published": "2017-09-11T08:40:12.000Z", "updated": "2017-09-11T08:40:12.000Z", "title": "Note on list star edge-coloring of subcubic graphs", "authors": [ "Borut Lužar", "Martina Mockovčiaková", "Roman Soták" ], "categories": [ "math.CO" ], "abstract": "{\\emph A star edge-coloring} of a graph is a proper edge-coloring without bichromatic paths and cycles of length four. In this paper, we consider the list version of this coloring and prove that the list star chromatic index of every subcubic graph is at most $7$, answering the question of Dvo\\v{r}\\'{a}k et al. (Star chromatic index, J. Graph Theory 72 (2013), 313--326).", "revisions": [ { "version": "v1", "updated": "2017-09-11T08:40:12.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "subcubic graph", "list star edge-coloring", "list star chromatic index", "graph theory", "bichromatic paths" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }