{ "id": "1709.03227", "version": "v1", "published": "2017-09-11T03:20:51.000Z", "updated": "2017-09-11T03:20:51.000Z", "title": "The bounded derived category of a poset", "authors": [ "Kosmas Diveris", "Marju Purin", "Peter Webb" ], "categories": [ "math.RT", "math.CO" ], "abstract": "We introduce a new combinatorial condition on a subinterval of a poset P (a clamped subinterval) that allows us to relate the Auslander-Reiten quiver of the bounded derived category of P to that of the subinterval. Applications include the determination of when a poset is fractionally Calabi-Yau and the computation of the Auslander-Reiten quivers of both the bounded derived category and of the module category.", "revisions": [ { "version": "v1", "updated": "2017-09-11T03:20:51.000Z" } ], "analyses": { "subjects": [ "16G70", "16G20", "18E30" ], "keywords": [ "bounded derived category", "auslander-reiten quiver", "module category", "combinatorial condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }