{ "id": "1709.03123", "version": "v1", "published": "2017-09-10T16:26:10.000Z", "updated": "2017-09-10T16:26:10.000Z", "title": "Weighted jump and variational inequalities for rough operators", "authors": [ "Yanping Chen", "Yong Ding", "Guixiang Hong", "Honghai Liu" ], "comment": "28 pages", "categories": [ "math.CA" ], "abstract": "In this paper, we systematically study weighted jump and variational inequalities for rough operators. More precisely, we show some weighted jump and variational inequalities for the families $\\mathcal T:=\\{T_\\varepsilon\\}_{\\varepsilon>0}$ of truncated singular integrals and $\\mathcal M_{\\Omega}:=\\{M_{\\Omega,t}\\}_{t>0}$ of averaging operators with rough kernels, which are defined respectively by $$ T_\\varepsilon f(x)=\\int_{|y|>\\varepsilon}\\frac{\\Omega(y')}{|y|^n}f(x-y)dy$$ and $$M_{\\Omega,t} f(x)=\\frac1{t^n}\\int_{|y|1$.", "revisions": [ { "version": "v1", "updated": "2017-09-10T16:26:10.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25" ], "keywords": [ "variational inequalities", "rough operators", "truncated singular integrals", "rough kernels", "systematically study weighted jump" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }