{ "id": "1709.03070", "version": "v1", "published": "2017-09-10T08:47:03.000Z", "updated": "2017-09-10T08:47:03.000Z", "title": "Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term", "authors": [ "Boumediene Abdellaoui", "Ahmed Attar", "El-Haj Laamri" ], "categories": [ "math.AP" ], "abstract": "In this work we analyze the existence of solutions to the nonlinear elliptic system: \\begin{equation*} \\left\\{ \\begin{array}{rcll} -\\Delta u & = & v^q+\\a g & \\text{in }\\Omega , \\\\ -\\Delta v& = &|\\nabla u|^{p}+\\l f &\\text{in }\\Omega , \\\\ u=v&=& 0 & \\text{on }\\partial \\Omega ,\\\\ u,v& \\geq & 0 & \\text{in }\\Omega, \\end{array}% \\right. \\end{equation*} where $\\Omega$ is a bounded domain of $\\ren$ and $p\\ge 1$, $q>0$ with $pq>1$. $f,g$ are nonnegative measurable functions with additional hypotheses and $\\a, \\l\\ge 0$. As a consequence we show that the fourth order problem \\begin{equation*} \\left\\{ \\begin{array}{rcll} \\Delta^2 u & = &|\\nabla u|^{p}+\\tilde{\\l} \\tilde{f} &\\text{in }\\Omega , \\\\ u=\\D u&=& 0 & \\text{on }\\partial \\Omega ,\\\\ \\end{array}% \\right. \\end{equation*} has a solution for all $p>1$, under suitable conditions on $\\tilde{f}$ and $\\tilde{\\l}$.", "revisions": [ { "version": "v1", "updated": "2017-09-10T08:47:03.000Z" } ], "analyses": { "subjects": [ "35J55", "35D10", "35J60" ], "keywords": [ "nonlinear elliptic system", "gradient term", "positive solutions", "nonlinearity", "fourth order problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }