{ "id": "1709.02710", "version": "v1", "published": "2017-09-08T14:08:18.000Z", "updated": "2017-09-08T14:08:18.000Z", "title": "Optimal spline spaces for $L^2$ $n$-width problems with boundary conditions", "authors": [ "Michael S. Floater", "Espen Sande" ], "comment": "17 pages, 4 figures, 1 table", "categories": [ "math.NA" ], "abstract": "In this paper we show that, with respect to the $L^2$ norm, three classes of functions in $H^r(0,1)$, defined by certain boundary conditions, admit optimal spline spaces of all degrees $\\geq r-1$, and all these spline spaces have uniform knots.", "revisions": [ { "version": "v1", "updated": "2017-09-08T14:08:18.000Z" } ], "analyses": { "keywords": [ "boundary conditions", "width problems", "admit optimal spline spaces", "uniform knots" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }